LCH – LIFE CYCLE HABITATION

Ing. Anita Preisler MSc¹, DI Michael Berger¹, Dr. Robert Wimmer², DI DI (FH) Sören Eikemeier²

teamgmi Ingenieurbüro GmbH, Schönbrunnerstrasse 44/10, 1050 Wien

GrAT, Gruppe Angepasste Technologie, Technische Universität Wien

E-Mail: anita.preisler@teamgmi.com www.teamgmi.com

1 Einleitung

Gesamtprojektziel ist es, innovative Baukonzepte zu demonstrieren, die CO₂-Emissionen sowie Ressourcen- und Energieverbrauch über den gesamten Lebenszyklus deutlich reduzieren. Prototypen für CO₂-neutrale und "LIFE cycle"-orientierte Wohngebäude und Siedlungen werden errichtet und als Standard von morgen entsprechend den EU-2020-Zielsetzungen demonstriert. Zu diesem Zweck wird in Böheimkirchen, Niederösterreich, ein hoch ressourcen- und energieeffizienter Prototypengebäudeverbund aus 7 Wohneinheiten und einem Gemeinschaftszentrum geplant und errichtet, die als Strohballenbauten in unterschiedlichen innovativen Bauweisen (lasttragend und vorgefertigte Modulbauweise) ausgeführt und durch ein hoch innovatives Energieversorgungssystem versorgt werden.

Hoch energieeffiziente nachhaltige Baustoffe werden verwendet: Strohballen, regionale nachwachsende Rohstoffe, weisen sehr niedrige Graue Energie auf (100 Mal weniger als konventionelle Dämmmaterialien), speichern CO₂ und weisen einen hohen Dämmwert auf. Industrielle Vorfertigung von Gebäudeteilen und Funktionsmodulen führt zu bestmöglicher Ressourceneffizienz und exakter Planbarkeit von Produktionsprozessen sowie kurzer Bauzeit vor Ort. Gebäudekomponenten der Siedlung werden von KMUs (Klein- und Mittelunternehmen) aus der Umgebung gewerkeübergreifend produziert.

2 Derzeitige Ergebnisse Energiekonzept

Basis zur Entwicklung des Energiekonzeptes sind die Lage und Geometrie der Demogebäude (siehe Abbildung 1) mit folgenden Zielen:

- Für die Energieversorgung wird auf solarthermische Energie gesetzt mit einem hohen Anteil der Solarenergie am System für Warmwasserbereitung und Heizung.
- Waschmaschine und Geschirrspüler werden vorrangig mit thermischer statt elektrischer Energie betrieben.
- Das Gemeinschaftszentrum bekommt eine Kochstelle, die mittels einer solarthermischen Thermoölanlage betrieben wird.
- Die drei Gebäude (Gemeinschaftszentrum + 5 Wohneinheiten, 2 Einfamilienhäuser) werden in einem Gebäudeverbund energetisch optimiert (Solarthermische Anlage, Mini-BHKW, Biomassekessel und Wärmepumpe).

Abbildung 1: Lageplan Demogebäude: Gebäudeverbund mit Gemeinschaftszentrum und Einzelhäuser (Quelle: GrAT)

Je Einzelhaus wird für die Entwicklung des Energiekonzepts eine beheizte Fläche von 100 m² und für den Gebäudeverbund 510 m² (2x 105 m² für 2-geschossige Häuser, 2x 60 m² für Wohnungen, 2x 90 m² für Gemeinschaftszentrum und Wohnung) angenommen.

Zur Berechnung der solarthermische Deckung wird das Programm Polysun Professional (Polysun 8.2 Professional, 2016) verwendet. Abbildung 2 zeigt die gewählte Polysun Vorlage für die Basisvariante Energiekonzept Gemeinschaftszentrum:

- Gebäudequalität: Passivhausstandard
- Heizungsverteilung: Fußbodenheizung
- Warmwasserbereitung: Frischwassermodule mit Zapftemperatur 45°C
- 120 m²_{BF} Flachkollektoren, Süd, 30° Neigungswinkel
- 10.000 I Solarspeicher
- 22,2 kW Wärmepumpe (COP 4,4)
- Doppel-U Erdwärmesonden (Sondenlänge: 271 m)
- Regeneration der Erdwärmesonden durch Solarthermie

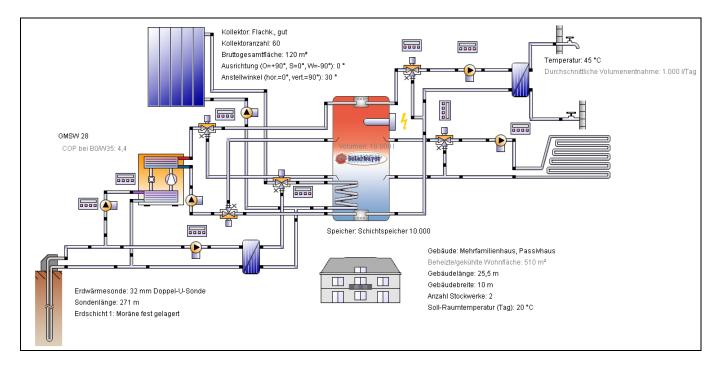


Abbildung 2: Basisvariante Energiekonzept Gebäudeverbund in Polysun (Quelle: teamgmi)

Abbildung 3 zeigt, dass in der Basisvariante die solarthermische Deckung des Warmwassers bei 76,4% liegt, die solarthermische Deckung für Warmwasser und Heizung bei 61,6%. Ausgehend von dieser Basisvariante wird im Folgenden der Einfluss folgender Parameter analysiert:

- Größe Solarspeicher
- Größe Kollektorfeld
- Solarkollektortyp (Flachkollektor, Vakuum-Röhrenkollektor, PVT)
- Regeneration Erdsonden über Solarthermie
- Einbindung Energiebedarf der Haushaltsgeräte
- Back-up System (Standard-Wärmepumpe, Gas-Wärmepumpe, Biomassekessel)

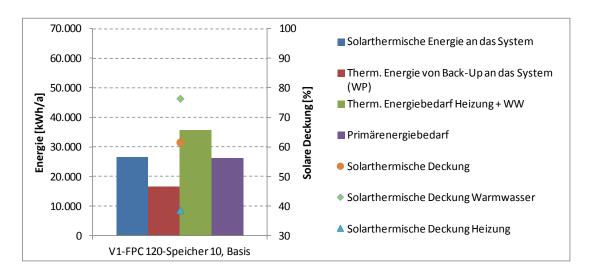


Abbildung 3: Ergebnisse Basisvariante Poysun (Quelle: teamgmi)

Ziel ist es, die Auswirkung der einzelnen Parameter auf die solarthermische Deckung, den Primärenergiebedarf und die Investitionskosten quantitativ zu bewerten. In Tabelle 1 sind die simulierten Varianten mit den wesentlichen Kenndaten dargestellt.

Tabelle 1: Simulierte Varianten (Quelle: teamgmi)

		V1	V2	V3	V4	V5	V6	V7
Kollektorfeldtyp		FPC^1	FPC	FPC	FPC	ETC ²	FPC	FPC
Kollektorfläche (brutto)	m²	120	120	120	120	120	160	80
Speichergröße	1	10.000	7.500	5.000	10.000	10.000	10.000	10.000
Speicherhöhe	m	4,4	4	2,8	4,4	4,4	4,4	4,4
Speicherdurchmesser	m	1,8	1,6	1,6	1,8	1,8	1,8	1,8
WP Heizleistung (0/35)	kW	22,2	22,2	22,2	22,2	22,2	22,2	22,2
Gas-WP Heizleistung (0/35)	kW	-	-	-	-	-	-	-
Pelletskessel Heizleistung	kW	-	-	-	-	-	-	-
Anzahl Doppel-U_Sonden 32mm/40mm		2	2	2	2	2	2	2
Sondenlänge	m	271	271	271	271	271	271	271
Regeneration Erdsonden mit Solarthermie (SeptOkt.)		ja	ja	ja	nein	ja	ja	ja
Warmwasserbedarf	I/d	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Warmwasserentnahme	°C	45	45	45	45	45	45	45

		V8	V9	V10	V11	V12	V13 ³	V14
Kollektorfeldtyp		FPC	FPC	ETC	PVT	ETC	ETC	FPC
Kollektorfläche (brutto)	m²	120	120	120	54	120	120	120
Speichergröße	1	10.000	10.000	10.000	4.000	10.000	10.000	10.000
Speicherhöhe	m	4,4	4,4	4,4	4	4,4	4,4	4,4
Speicherdurchmesser	m	1,8	1,8	1,8	1,6	1,8	1,8	1,8
WP Heizleistung (0/35)	kW	22,2	22,2	22,2	22,2	-	-	-
Gas-WP Heizleistung (0/35)	kW	-	-	-	-	-	-	41,64
Pelletskessel Heizleistung	kW	-	-	-	-	25	25	
Anzahl Doppel-U_Sonden 32mm/40mm		2	2	2	1	-	-	2
Sondenlänge	m	271	271	271	371	-	-	271
Regeneration Erdsonden mit Solarthermie (SeptOkt.)		ja	ja	ja	ja	-	-	ja
Warmwasserbedarf	l/d	1.570	1.570	1.570	1.000	1.000	1.000	1.000
Warmwasserentnahme	°C	45	60	60	45	45	45	45

¹ FPC=Flat Plate Collector (Flachkollektoren)

² ETC=Evacuated Tube Collector (Vakuum-Röhrenkollektor)

³ Anderes Polysun Hydraulikschema-Vorlage ⁴ Fabrikat/Type: Robur/GAHP-GS

Abbildung 4 zeigt eine Regeneration der Erdwärmesonden im Zeitraum Mai bis August mit überschüssigen Solarthermie-Erträgen. Hier ist ersichtlich, dass in den Monaten September und Oktober noch kaum Energie zur Heizung und Warmwasserbereitung erforderlich ist. Dies lässt sich durch die Passivhausqualität des Gebäudes und die große solarthermische Anlage erklären.

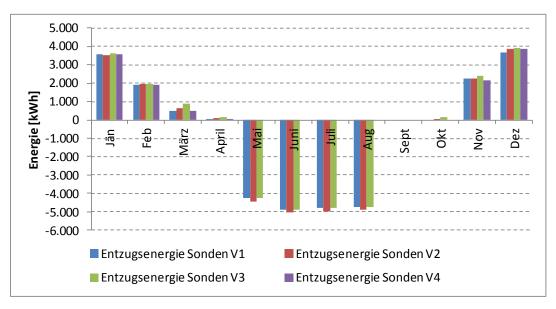


Abbildung 4: Regeneration Erdsonden über Solarthermie Mai-August (Quelle: teamgmi)

In Abbildung 5 ist die Regeneration der Erdsonden über Solarthermie auf die Monate September und Oktober verschoben. Somit ist es möglich einerseits die Erdwärmesonden im Sommer für Free-Cooling zu nutzen und andererseits eine Regeneration des Erdreiches vor der Heizsaison zu erreichen. In den Monaten Mai bis August wird das Erdreich über die mittels Fußbodenkühlung abgeführten Wärmelasten ebenfalls regeneriert, was jedoch mit den derzeit vorhandenen Polysun Professional Vorlagen nicht separat berechnet werden kann.

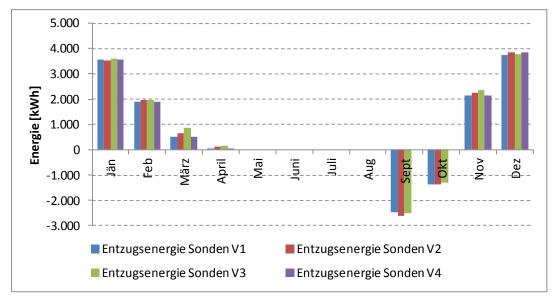


Abbildung 5: Regeneration Erdsonden über Solarthermie Sep.-Okt. (Quelle: teamgmi)

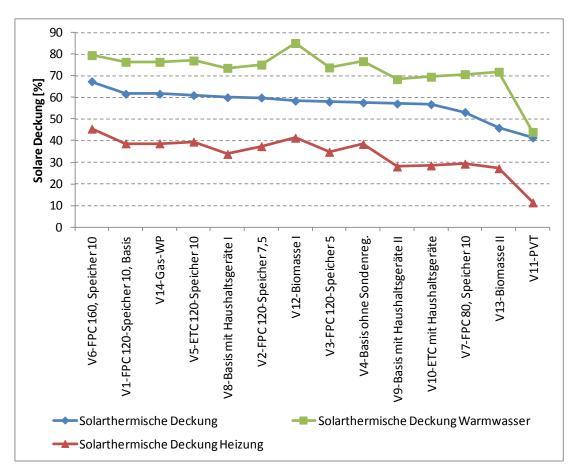


Abbildung 6: Sortierte Ergebnisse solare Deckung (Quelle: teamgmi)

Abbildung 6 zeigt, dass 10 der 14 simulierten Varianten eine solarthermische Deckung von 60% leicht über- bzw. unterschreiten. Hierbei ist jedoch anzumerken, dass die erreichbare solarthermische Deckung stark von der gewählten Vorlage in Polysun abhängt, was die Ergebnisse von Variante 12 und Variante 13 (mit Biomasse Back-up) zeigen. Hier wurde lediglich eine andere Vorlage mit denselben Kenndaten der einzelnen Komponenten gewählt wobei Variante 12 eine solarthermische Deckung von 58,4% aufweist und Variante 13 lediglich 45,9%. Um Aussagen auf den Einfluss einzelner Parameter auf das Gesamtsystem treffen zu können, ist es daher wesentlich nur die Ergebnisse zu verwenden in denen die gleiche Vorlage verwendet wurde. Die hier untersuchte Verkleinerung des Solarspeichers in Variante 2 und Variante 3 hat auf die Solarthermische Deckung wenig Einfluss, jedoch erhöht sich das Risiko zur Stagnation des Kollektorfeldes. Auch der Wechsel auf Vakuum-Röhrenkollektoren hat kaum Einfluss auf die solarthermische Deckung. Die Größe der Kollektorfläche zeigt einen größeren Einfluss, eine Vergrößerung der Kollektorfläche auf 160 m²BF in Variante 6 verbessert die solarthermische Deckung um 5,8%, eine Verkleinerung auf 80 m²_{BF} verringert die solarthermische Deckung um 8,4%. In Variante 11 mit PVT sind nur die solarthermischen Erträge berücksichtigt, die solaren Erträge durch die PV fließen jedoch in die Primärenergiebetrachtung (siehe Abbildung 7) ein.

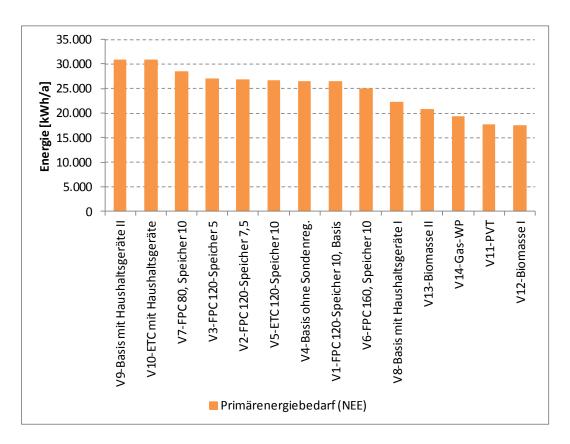


Abbildung 7: Sortierte Ergebnisse Primärenergiebedarf (Quelle: teamgmi)

In Abbildung 7 ist der Primärenergiebedarf der simulierten Varianten in absteigender Reihenfolge mit den Primärenergiefaktoren laut Tabelle 2 dargestellt. In dieser Auswertung ist auch der Energiebedarf für die die Haushaltsgeräte berücksichtigt. In Variante 9 und 10 wird 50% des Energiebedarfs für Haushaltsgeräte thermisch gedeckt, indem die Waschmaschinen und Geschirrspüler vorrangig thermisch betrieben werden. Dafür wurde die Solltemperatur Warmwasser auf 60°C angehoben, was aber einen höheren Strombedarf der Wärmepumpe mit sich führt. Regelungstechnisch ist es möglich diesen Betrieb von der Solarspeichertemperatur abhängig zu machen, jedoch konnte dies mit Polysun Professional nicht abgebildet werden. Die Varianten mit Biomasse, Biogas-Wärmepumpe und PVT schneiden in der primärenergetischen Bewertung besser ab, als die Varianten mit Standard-Wärmepumpe.

Tabelle 2: Primärenergiefaktoren

PE-Faktor Holz (NE) lt. PHPP 2014					
PE-Faktor Strom-Mix (NE) lt. PHPP 2014	2,6				
PE-Faktor Biogas (NE) lt. DIN V 18599-1: 2011-12	0,5				

Abbildung 8 zeigt die geschätzten Investitionskosten pro Top für die simulierten Varianten. Für diese Kostenschätzung sind Kosten aus Referenzprojekten von teamgmi, Angebote von Herstellern und aktuelle Preislisten von Herstellern herangezogen worden. Die Varianten mit Vakuum-Röhrenkollektoren sind wesentlich teurer in der Investition als die Varianten mit

Flachkollektoren. PVT-Anlagen sind pro m² auch wesentlich teurer als Flachkollektor-Anlagen, jedoch ist in Variante 11 eine PVT Kollektorfläche von 54 m²_{BF} angesetzt, womit die Investitionskosten insgesamt unter denen der Flachkollektor-Anlagen liegen. Für die Variante 14 mit Gas-Wärmepumpe ist ein Angebot der Firma Robur eingeholt worden. Die Investitionskosten liegen für die Gas-Wärmepumpen Anlage etwas höher als für die Standard-Wärmepumpen Anlage.

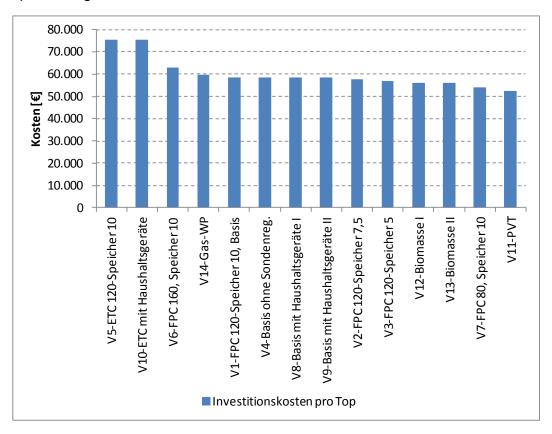


Abbildung 8: Sortierte Ergebnisse Investitionskosten (Quelle: teamgmi)

In Abbildung 9 ist zusammenfassend eine Bewertung aller simulierten Varianten mittels Qualitätspunkte dargestellt.

Die Kriterien zur Bewertung sind:

- 1. Solarthermische Deckung
- 2. Primärenergiebedarf
- 3. Investitionskosten
- 4. Innovationsgehalt
- 5. Solarthermischer Betrieb Haushaltsgeräte
- 6. Free-Cooling Betrieb
- 7. Sicherheit in Umsetzung/Betrieb
- 8. Geringe Stagnationszeiten Solarthermie
- 9. Platzbedarf Technikflächen im Gebäude

Bewertet ist, ob die jeweilige Variante das Kriterium schwach (0 Punkte), geeignet (1 Punkt), gut (2 Punkte) oder sehr gut (3 Punkte) erfüllt.

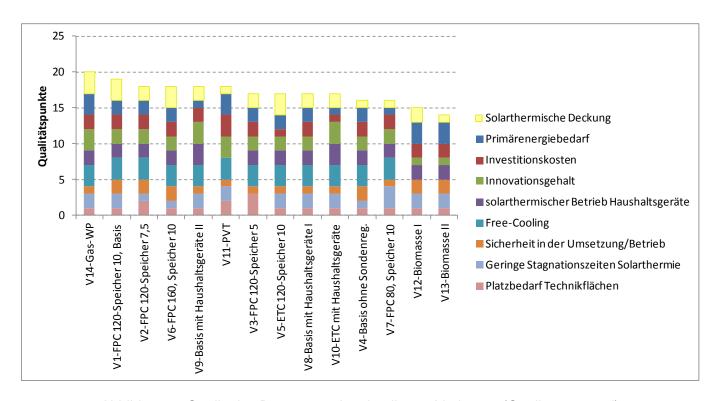


Abbildung 9: Qualitative Bewertung der simulierten Varianten (Quelle: teamgmi)

Abbildung 9 zeigt in absteigender Reihenfolge das Ergebnis der qualitativen Bewertung aller simulierten Varianten. Hierbei ist keine eindeutige Tendenz für eine Variante ablesbar, da die Ergebnisse sehr nah beieinander liegen. Dies zeigt, dass keine der Varianten in allen der hier gewählten Kriterien sehr gut ist, und somit ein Kompromiss zur Auswahl des Energiekonzeptes gefunden werden muss. Die Variante, die anhand der hier gewählten Kriterien am besten abschneidet ist die Variante 14 mit Gas-Wärmepumpe, wenn sie mit Biogas betrieben wird. Die Basisvariante liegt jedoch nur einen Punkt darunter und kann daher auch als durchaus geeignet betrachtet werden. Diese Bewertung hat gezeigt, dass für die Entwicklung eines innovativen, nachhaltigen Energiekonzeptes mit Zielrichtung hohe solarthermische Deckung eine Vielzahl an Kriterien zu beachten sind und die Lösungsfindung ein durchaus komplexer Vorgang ist.

Eckdaten des Projekts:

EU-Projekt Life 2013: LCH Life Cycle Habitation

Projektpartner: GrAT, Gruppe Angepasste Technologie, Technische Universität Wien

teamgmi Ingenieurbüro GmbH, Wien

Status des Projektes: laufend

Laufzeit des Projektes: 01.06.2014 - 31.12.2018

3 Literaturverzeichnis

Polysun 8.2 Professional. (2016). Simulation Software. Zürich: Vela Solaris.

